
International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 1064
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Survey Paper on Maze Generation Algorithms for
Puzzle Solving Games

Ms. Shivani H. Shah, Ms. Jagruti M. Mohite, Mr. Anoop G. Musale, Mr. Jay L. Borade

Abstract- A maze is a sort of puzzle having many branch passages. Some are closed and some lead to the end position. Here
solver’s goal is to move from a starting position to an end position i.e. a valid passage between these two positions has to be
revealed. Maze generation is popular in entertainment domain. Mazes are used to solve the navigational problems which indeed
brought the need of automation of maze generation. This paper gives an overview of three basic two-dimensional maze
generation algorithms: a) Depth-First Search (DFS), b) Kruskal’s Algorithm and c) Prim’s Algorithm. These algorithms describe
three conceptually different approaches for generating maze.

Index Terms- Depth-First Search, Graph algorithms, Grid, Kruskal’s Algorithm, Maze generation algorithms, Maze creation
algorithms, Prim’s Algorithm.

—————————— ——————————

1 INTRODUCTION
AZE is a complicated system of paths in which
people try to find their way through way of
entertainment.. Mazes are of various shapes, sizes

and difficulty. Maze has become very popular in fun stuff
and an interesting domain from a mathematical point of
view that is mazes can also be used to train brain.

 Maze generation includes designing the layout of
passages and walls within a maze. There are many different
approaches for generating maze such as recursive division
method, with various maze generation algorithms for
building it. Maze generation is a difficult task since there
has to manage several stuff that has to be controlled during
generation. Some of them are as follows:

1. The maze should have a Start point and Exit Point.
2. The path to the exit must be reachable from the

start.
3. Grids that are not included in the path must be

reachable from start.
4. Maze should not consist of any cycle.
5. All the grids should be reachable.
6. The number of walls should be considerable so

that the player will not reach the exit quickly.
7. Between any pair of grids there should only be one

possible solution.

2 DEPTH FIRST SEARCH
Maze generation uses the randomized version of depth-first
search algorithm. This algorithm is the simplest one and
easy to implement using recursive method and stack [1].
Frequently it is implemented with a stack. Consider the
space as a large grid of cells, each cell having four walls.
Starts by selecting any random cell from the grid, the
program then selects any random neighboring cell that has
not yet been visited. The program removes the 'wall'
between the two cells that are not connected and adds the
new cell to a stack [2].

The program continues this process till the time, none

of the unvisited neighbors being considered as a dead-end.
Once it reach the dead end it backtracks through path till
the time it reaches a cell with an unvisited neighbor and
continuous the path generation by visiting this new,
unvisited cell. This process continues until every cell has
been visited, causing a program to backtrack all the way
back to the start. This approach guarantees that all the cells
are covered and the maze space is completely visited.

2.1 Algorithm
The algorithm proceeds as follows:

1. Mark the current cell as 'Visited'
2. If the current cell has any neighbors which have

not been visited
1. Choose randomly one of the unvisited

neighbors.
2. Add the current cell to the stack.
3. Remove the wall between the current

cell and the chosen cell.
4. Make the chosen cell the current cell.
5. Recursively call this function.

3. else
1. Remove the last current cell from the

stack.
2. Backtrack to the previous execution of

this function.

After execution of this algorithm, a ‘perfect maze with no
dead end’ is generated and has a single solution [3].

(1) (2)

M

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 1065
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

 (3) (4)

3 KRUSKAL’S ALGORITHM
Kruskal’s algorithm is a method for producing a minimal
spanning tree from a weighted graph. Randomized
Kruskal’s algorithm is used for generating the maze form
grids, it works by randomly selecting an edges from the
graph, and adding them to the maze if they are connecting
the disjoint trees. Usually it is done in an increasing
distance but in case of maze all the cells of grids are at same
distance [4]. Visually, it has the effect of growing the maze
from many random points across the grid [3].

It works something like this:
• Create a list of all the available wall
• Select any random wall from random cell and

remove it from the list.
• In case if there are is no way to move between the

two cells then remove that particular wall which is
blocking the way.

• Repeat it until there are no more cells left.

3.1 Example
For this example we will use a simple 3×3 grid.
We’ve assigned each cell a number, indicating which set it
belongs to.

This algorithm is straightforward:

Starts by simply selecting an edge at random and join the
cells it connects if they are not already connected by a path.
We can know if the cells are already connected if they are in
the same set. So, let’s choose the edge between (2, 2) and (2,
3). The cells are in different sets, so we can join the two into
a single set and connect the cells as:

Let’s do a few more passes of the algorithm, to
get to the interesting part:

Here’s where things start to move fast. Note what happens
when the edge between (1, 2) and (2, 2) is pulled from the
bag:

Now we will join these two trees, 1 and 5, into one set, 1, by
implying that any cell in 1 is reachable from any other cell
in 1. So we will try joining (1, 3) and (2, 3) now:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 1066
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Now, consider the edges (1, 1)–(1, 2) and (1, 2)-(2, 2). None
of these has been drawn from the bag yet .Let’s see what
would happen if one of them were? Well, in both cases, the
cells on either side of the edge belong to the same set.
Connecting the cells in either case would result in a cycle,
so we will discard that edge and try again.

Kruskal’s algorithm gets ended when there is no more
edges are left to consider (which, in this case, is when there
is only a single set left). And the result is a perfect maze!

4 PRIM’S ALGORITHM
Prim’s algorithm, starts by selecting any random cell from
the grid and detects its neighboring cell and mark it as
frontiers, one of which is randomly added to the maze.
When the cell is added to the maze, the new frontiers are
detected. The algorithm goes on until all the grid is
converted into maze. That is it starts at one point and grow
outwards from that point. So the sequence of the actions is
in the following way [5].
4.1 Algorithm

1. Start by selecting a random cell.
2. Mark that cell as “in” and al l its cell as “frontier”

cell.
3. Choose random cell from “frontier”. If it is not in

the set, delete the wall between current cell and the
neighbor.

4. Go to step one (but now the random cell is selected
among cells in the “frontier”).

5. Repeat until all the cells in the maze are covered
and no mare cells are left in “frontier”.

For implementing this algorithm [5] we will require
two datasets. One for the “in” cell and another for the
“frontier” cell. Let’s start with a simple example by
taking 3x3 a grid.

4.2 Example

Now, we will select a point at random and add it to the
“in”.

Grey color represents the “in” cell and Yellow color
represents the “frontier” cell.

Just for sake of efficiency, let’s call the set of all
cells that are not present in the “in” data set, but are
adjacent to a cell that are present in the stack, that is the
“frontier”. We’ll color those cells with yellow.

Now, we will select any one of these frontier cells at
random and create a passage from that frontier cell to
whichever adjacent cell that is already a present in the “in”.
Then we will mark the neighbors of the formerly front cell,
as “frontier” cells.

Flush and repeat the procedure:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 1067
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Now, here there is a little bit change. Let’s see what
happens if we randomly select the cell at (1, 0) that is the
top middle. That is already adjacent to the two cells that are
already “in” the stack. This algorithm resolves it by simply
selecting one of the “in” neighbors at random. Prim’s
Algorithm doesn’t care which neighbor is to be picked up,
only care to be taken is that each front cell eventually be
connected to a cell which is already present in the stack.[6]

Keep on going it till the end:

This algorithm will terminate when there are no
more front cell to select from, giving us the
perfect maze.

5 CONCLUSION

Maze acts as an unknown environment that helps in
tackling path finding, puzzle solving and path solving
related problem. Due to its advantage of increasing the
complexity of the maze as per required. Thus, maze acts as
the basic milestone that is to be achieved for creating a self-
automated moving robot [5]. These above mentioned
algorithms have their own advantages and disadvantages
that help in creating variety of mazes as per required. As
DFS is one of the most basic algorithms to be implemented.
It generates different mazes every time even if the number
of rows and columns are the same. This is not the same in
the case of Kruskal’s algorithm and Prim’s algorithm. But,
Kruskal’s algorithm and Prim’s algorithm create a perfect
maze every time and at input [7]. Whereas, DFS might
create an imperfect maze i.e. the maze generated might not
have any path to the goal.

REFERENCES
[1] Aliona Kozlova, and Joseph Alexander Brown, “Examination of

Representational Expression in Maze Generation Algorithm,” IEEE
Conference on Computational Intelligence and Games, At Tainan,
Taiwan, 19 August 2015.

[2] http://www.algostructure.com/specials/maze.php
[3] Nimesh Patel, Dr. K. M. Patel, “Survey on: Enhancement of Minimum

Spanning Tree,” Journal of Research and Application, Vol.5, No.1, January
2015, pp.06-10.

[4] Nirav J. Patel, Prof. Shweta Agrawat, “Survey paper on Different
techniques for Minimum Spanning Tree,” International Journal of
Engineering Development and Research. ISSN: 2321-9939, pp. 22-25.

[5] Martin Foltin, Automated maze Generation and Human interaction,
Masaryk University Faculty of Informatics, 2011 (Diploma Thesis).

[6] http://weblog.jamisbuck.org/2011/1/10/maze-generation-prim-s-
algorithm

[7] https://en.wikipedia.org/wiki/Maze_generation_algorithm

IJSER

http://www.ijser.org/
http://www.algostructure.com/specials/maze.php
http://weblog.jamisbuck.org/2011/1/10/maze-generation-prim-s-algorithm
http://weblog.jamisbuck.org/2011/1/10/maze-generation-prim-s-algorithm
https://en.wikipedia.org/wiki/Maze_generation_algorithm

	1 Introduction
	2 Depth First Search
	Algorithm

	Kruskal’s Algorithm
	Example

	Prim’s Algorithm
	Algorithm
	Example

	CONCLUSION
	References

